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NLP Tasks 

– Named entity recognition 

 

 

 

 

 

4 



NLP Tasks 

– Sentiment Analysis 
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Generic NLP Supervised Model 
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Distributed Word 
Representations 

E.g. (Collobert, 2011), (Turian et 
al., 2010), (Devlin et al., 2014) 



Word Distributed Representations 
capture Semantics 

• Semantics: “The relation between the words or expressions of a 
language and their meaning.” (Gardenfors, 2004) 
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Yellow 

{sunset, the tray, 
my table, Joe’s 
laptop, that 
towel, …} 

{my car, the 
sticker, her pen, 

my bag, …} 

Extensional 
e.g. Tarski model theory 

Conceptual Spaces 
(Gardendors, 2004) 

Orange 
Yellow 

Distributional 
ESA (Gabrilovich & Markovitch, 2007) 
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Orange 
Yellow 

http://en.wikipedia.org 
/wiki/Fire 

http://en.wikipedia.org 
/ wiki/Sun v1 v2 

topology, statistical topology 

Image CC BY-SA 3.0  by Michael Horvath 
https://commons.wikimedia.org/wiki/User:SharkD 



Word Embeddings 

• Word2Vec (Mikolov et al., 2013)  

• GloVe (Pennington et al., 2014) 
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Word Embeddings 

• Word2Vec (Mikolov et al., 2013)  

• GloVe (Pennington et al., 2014) 
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Image is from work created and shared by Google and used according to terms described in the Creative Commons 3.0 Attribution License. 

https://developers.google.com/readme/policies/
http://creativecommons.org/licenses/by/3.0/


Why Called Embedding? 
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Image CC BY-SA 3.0 by Lars H. Rohwedder, 
https://commons.wikimedia.org/wiki/User:RokerHRO 



Why Called Embedding? 
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Derivative image CC BY-SA 3.0 by Ryan Wilson from Jitse Niesen 
https://commons.wikimedia.org/wiki/User:Pbroks13; https://en.wikipedia.org/wiki/User:Jitse_Niesen 



Mathematical Structures 
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{Dublin, Paris, LA} 

{Dublin, Paris, LA} 
{{}, {Dublin, Paris}, {Dublin, Paris, LA}} 

{Dublin, Paris, LA} 
  Dublin Paris LA 

Dublin 0 779 8314 

Paris 779 0  9096 

LA 8314 9096 0 

{Dublin, Paris, LA} 
Dublin=53.3498° N+6.2603° W 
Paris= 48.8566° N+ 2.3522° E 
LA= 34.0522° N+ 118.2437° W 



Mathematical Structures and ML 
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e.g. Earth Surface 2D Embedding 
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Image CC BY-SA 3.0 by Lars H. Rohwedder, 
https://commons.wikimedia.org/wiki/User:RokerHRO 



e.g. Shape of the Universe 
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Manifold Learning 

• Embedding while preserving the neighbourhood 

17 
Saul, Lawrence K., and Sam T. Roweis. "An introduction to locally linear embedding.“ Available at: http://www. cs. toronto. 
edu/~ roweis/lle/publications. html(2000). 



Manifold Learning for Dimensionality 
Reduction 

18 



Manifold Learning- Various Algorithms 

19 http://scikit-learn.org/stable/auto_examples/manifold/plot_compare_methods.html 



Word Re-Embedding: Problem 
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Word Pairs Ground Truth Similarity 
By WS353 ground truth similarity score 
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Can we improve an 
existing embedding 

space? 



Word Re-Embedding: Methodology 
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Word Re-Embedding: Related Work 

– Word embedding: Word2Vec (Mikolov et al., 2013), 
GloVe (Pennington et al., 2014a) 

– Unified metric recovery framework for word embedding 
and manifold learning (Hashimoto et al., 2016) 

– Manifold learning for dimensionality reduction and 
embedding: Locally Linear Embedding (LLE) (Roweis and 
Saul, 2000), Isomap (Balasubramanian and Schwartz, 
2002), t-SNE (Maaten and Hinton, 2008), etc. 

– Word embedding post-processing: (Labutov and Lipson, 
2013), (Lee et al., 2016), (Mu et al., 2017) 

– Need for generic, unsupervised, nonlinear, and 
theoretically-founded model for post-processing 
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Approach 
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Results 
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Re-embedding by Manifold learning 
increased the similarity estimation 

between nearby words, and decreased 
the similarity estimation between 
distant words, resulting in a higher 
correlation with human judgement 



Word Re-Embedding: Results 
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Word Re-Embedding: Results 
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Word Re-Embedding: Results 
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Word Re-Embedding: Results 
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Word Re-Embedding: Results 
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Conclusions 

– Word re-embedding improves performance on 
word similarity tasks 

– The sample window start should be chosen just 
after the stop words 

– The sample length should be close or equal to the 
number of local neighbours, which in turn can be 
chosen from a wide range 

– The dimensionality of the original embedding 
space should be retained  
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