Word Re-Embedding via Manifold Learning

Souleiman Hasan

Lecturer, Maynooth University, School of Business and Hamilton Institute

souleiman.hasan@mu.ie

Machine Learning Dublin Meetup, Dublin, Ireland, 26 Feb 2018

Based On

 Souleiman Hasan and Edward Curry. "Word Re-Embedding via Manifold Dimensionality Retention." *Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (EMNLP 2017)*

http://aclweb.org/anthology/D17-1033

European Union European Regional Development Fund

Outline

- Motivation
 - NLP tasks, Semantics, Word embeddings
- Background
 - Mathematical Structures, Manifold Learning
- Word Re-embedding
 - Methodology and Related Work
 - Approach
 - Results

NLP Tasks

Named entity recognition

Input: Vancouver is a coastal seaport city on the mainland of British Columbia. The city's mayor is Gregor Robertson.

Location

Output: <u>Vancouver</u> is a coastal seaport city on the mainland of <u>British Columbia</u>. The city's mayor is <u>Gregor Robertson</u>.

Location

-					
D	0	20	2.6	1.	£
	С		31		

Bryan Perozzi Stony Brook University Polyglot-NER: Massive Multilingual Named Entity Recognition

NLP Tasks

– Sentiment Analysis

Generic NLP Supervised Model

Generic NLP Supervised Model

Word Distributed Representations capture Semantics Semantics: "The relation between the words or expressions of a

• Semantics: "The relation between the words or expressions of a language and their meaning." (Gardenfors, 2004)

Word Embeddings

- Word2Vec (Mikolov et al., 2013)
- GloVe (Pennington et al., 2014)

Word Embeddings

- Word2Vec (Mikolov et al., 2013)
- GloVe (Pennington et al., 2014)

Country-Capital

Why Called Embedding?

Why Called Embedding?

Mathematical Structures

Mathematical Structures and ML

e.g. Earth Surface 2D Embedding

e.g. Shape of the Universe

Manifold Learning

Embedding while preserving the neighbourhood

Saul, Lawrence K., and Sam T. Roweis. "An introduction to locally linear embedding." *Available at: http://www. cs. toronto. edu/~ roweis/lle/publications. html*(2000).

Manifold Learning for Dimensionality Reduction

Manifold Learning- Various Algorithms

http://scikit-learn.org/stable/auto_examples/manifold/plot_compare_methods.html 19

Word Re-Embedding: Problem

Word Re-Embedding: Problem

Word Re-Embedding: Methodology

Word Re-Embedding: Related Work

- Word embedding: Word2Vec (Mikolov et al., 2013), GloVe (Pennington et al., 2014a)
- Unified metric recovery framework for word embedding and manifold learning (Hashimoto et al., 2016)
- Manifold learning for dimensionality reduction and embedding: Locally Linear Embedding (LLE) (Roweis and Saul, 2000), Isomap (Balasubramanian and Schwartz, 2002), t-SNE (Maaten and Hinton, 2008), etc.
- Word embedding post-processing: (Labutov and Lipson, 2013), (Lee et al., 2016), (Mu et al., 2017)
- Need for generic, unsupervised, nonlinear, and theoretically-founded model for post-processing

Word Pairs Ground Truth Similarity

By WS353 ground truth similarity score

Space	Task	GloVe	Re-Embedding
6B 50d	WS353	<u>61.2</u>	56.6
6B 50d	RG65	<u>60.2</u>	53.0
6B 100d	WS353	<u>64.5</u>	64.3
6B 100d	RG65	65.3	<u>67.3</u>
6B 200d	WS353	68.5	<u>69.7</u>
6B 200d	RG65	75.5	<u>76.0</u>
6B 300d	WS353	65.8	70.3
6B 300d	RG65	75.5	<u>80.5</u>
42B 300d	WS353	75.2	78.4
42B 300d	RG65	80.0	<u>83.4</u>

Table 1: Average performance on similarity tasks. (Window start \in [5000, 15000], Number of LLE local neighbours =1000, Window length = 1001, Manifold dimensionality = Space dimensionality.)

Conclusions

- Word re-embedding improves performance on word similarity tasks
- The sample window start should be chosen just after the stop words
- The sample length should be close or equal to the number of local neighbours, which in turn can be chosen from a wide range
- The dimensionality of the original embedding space should be retained